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Do longshore bars shelter the shore?
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(Received 28 May 1999 and in revised form 4 October 1999)

In most past theories on Bragg reflection of waves by a finite patch of rigid bars,
only outgoing waves are allowed on the transmission side, simulating the effect of an
idealized shoreline where all the incident wave energy is consumed by breaking. In
these theories the amplitudes of both the incident and reflected waves are found to
decrease monotonically over the bar patch in the shoreward direction. This result has
motivated the idea of artificially constructing bars to protect a beach from incident
waves. However, some numerical calculations have suggested that this tendency does
not always hold when there is some reflection from the shore. We show here that with
finite reflection by the shoreline the spatial distribution of wave energy over the patch
can indeed be reversed, indicating that the mechanism can increase the hazards to
the beach. The phase relation between the bars and the shoreline reflection is found
to be the key to this qualitative change of wave response.

1. Introduction
When waves pass over a seabed covered with bars spaced at half of the water

wavelength, reflection is amplified. This mechanism, called Bragg resonance in crys-
tallography, is due to the constructive interference of reflected waves from successive
bar crests. Since the experimental demonstration by Heathershaw (1982), this subject
has been studied extensively by many researchers (Davies & Heathershaw 1984; Mei
1985; Kirby 1986, 1989, 1993; Dalrymple & Kirby 1986; Hara & Mei 1987; Liu 1987;
Yoon & Liu 1987; Mei, Hara & Naciri 1988; Guazzelli, Rey & Belzons 1992; Rey,
Guazzelli & Mei 1996; Mattioli 1990, 1991; Nayfeh & Hawwa 1994; etc. see Mei &
Liu 1993 for a review). A common example treated in those studies is the scattering
of waves by a finite patch of rigid bars on an otherwise plane bed; reflection from
the beach toward the patch is assumed to be negligible. It is found that, when the
incident wave and the bars are closely matched, the amplitudes of the incident and
the reflected waves decrease monotonically toward the shore, suggesting that a bar
patch sufficiently tuned to the incident waves can serve as a breakwater for protecting
the shoreline (e.g. Mei et al. 1988; Baillard et al. 1990; Baillard, DeVries & Kirby
1992).

In nature, there is always some reflection from the shore, either because dissipation
by breaking at the shore is incomplete or the beach slope is steep. With finite
reflection from the shoreline, wave evolution over the bars can be more complicated.
Some indication of this complexity was noted by Kirby & Anton (1990) in a numerical
study. They considered a vertical wall at some distance downwave of a patch of several
rigid bars, and found that near Bragg resonance the amplitude of the free-surface
oscillations at the wall can vary between 1 to 3.6 times the amplitude of the incident
waves, depending on the distance between the bars and the wall. It thus appears that
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Bragg resonance does not necessarily help protect the shoreline from the incident
sea. Kirby & Anton attributed the amplification to possible resonance of the region
between the end of the bar patch and the wall.

O’Hare & Davies (1993) studied sand bars under partially reflected waves, exper-
imentally and numerically. While their emphasis was on the evolution of sand bars
on an erodible bed, they also gave some numerical results for rigid bars. Two of their
computations (in their figure 15) show that when the bar crests were just upwave of
the wave envelope nodes, the amplitude of the waves decreased shoreward over the
patch. When the shoreline condition was adjusted so that the bar crests were just
upwave of the wave envelope antinodes, then the amplitude of the waves increased
shoreward. The explanation given by O’Hare & Davies was that the incident and
beach-reflected waves were affected differently by the bars (one is reflected and the
other not).†

Imperfect beach absorption was also considered by Benjamin, Boczar-Karakiewicz
& Pritchard (1987) in their attempts to make close comparison with the experiments.
But the importance of this shore reflection was not fully examined because the beach
reflection coefficient was taken to be real.

In this note, we give an analytical study of the effects of the shore reflection on
Bragg resonance, with a view to a deeper understanding of the effects of shoreline
reflection on the Bragg resonance. We shall show that the qualitative behaviour of
the wave amplitudes over the bar patch depends sensitively on the phase difference
between the shore reflection and the bars. A transient analysis is also described to
elucidate the physics of this sensitive dependence.

2. Envelope equations
As in Mei (1985), we consider the plane problem of a normally incident wavetrain

approaching from x ∼ −∞ and passing over a finite patch of rigid bars. For simplicity
the mean water depth h is assumed to be constant, although modification for a sloping
beach is in principle possible in the manner of Mei et al. (1988). Focusing on the case
of near resonance, we assume that the incident wavelength is approximately twice
the bar spacing. In a coordinate system where the x-axis coincides with the mean sea
surface, and the z-axis points upward, the bed profile is given by

z =

{ −h+ 1
2
De−2ikx + 1

2
D∗e2ikx for 0 < x < L

−h elsewhere,
(2.1)

where

D = |D| eiθD (2.2)

is the constant complex bar amplitude and D∗ its complex conjugate. The width L is
much greater than the wavelength so that kL� 1. For convenience, we shall refer to
x = 0 as the seaward end and x = L as the shoreward end of the patch. A shoreline
or a seawall exists at some distance x = L+ Lf .

For gentle waves, the leading-order velocity potential is given by

φ =
ig

2ω

cosh k(z + h)

cosh kh

(
Ae−ikx − Beikx

)
eiωt + c.c., (2.3)

† They state that if “. . . the bar crests are upwave of the antinodes, the incident wave propagates
over the bars without reflection, but the beach reflected wave is re-reflected. As a general rule,
waves which encounter a bar crest directly after propagating through an antinode will be reflected”
(p. 1173, O’Hare & Davies 1993).
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where ω denotes the wave frequency related to the wavenumber k by

ω2 = gk tanh kh. (2.4)

The water depth is assumed to be finite, i.e. kh = O(1). The amplitudes of the incident
(A, right-going) and the reflected (B, left-going) waves are known to be governed by
the following asymptotic equations (Mei 1985):

∂A

∂t
+ Cg

∂A

∂x
= − iDωk

2 sinh 2kh
B, (2.5)

∂B

∂t
− Cg ∂B

∂x
= − iD∗ωk

2 sinh 2kh
A, (2.6)

where

Cg =
1

2

ω

k

(
1 +

2kh

sinh 2kh

)
(2.7)

is the group velocity. Compared respectively to the wave period 2π/ω and the
wavelength 2π/k, the time and space scales of variations of A and B are much greater
by a factor of 1/ε, where ε is the typical steepness of the waves and the bars, i.e.
ε = O(kA, kB, kD).

Over the flat sections of the bed (x < 0, x > L), the right-hand sides of (2.5) and
(2.6) vanish, so that A and B propagate with the group velocity without changing their
values. At the incident end x = 0 we require that A equal the prescribed amplitude
of the incident wavetrain, i.e.

A(0, t) = given, at x = 0. (2.8)

At the transmission end, B(L) 6= 0 due to the presence of the shoreline or seawall at
distance x = L+Lf . In general, a complex reflection coefficient B/A can be specified
at x = L+ Lf by empirical knowledge of the shore. At the steady state, this effect of
the shoreline can be represented by the complex reflection RL at x = L, i.e.

R(L) ≡ RL =
B

A
at x = L. (2.9)

For example, if there is a perfectly reflecting vertical wall at x = L+Lf and the incident
wavenumber is slightly detuned from perfect resonance by K where K = εk � k,
then vanishing of the normal velocity at the wall gives

RL = eiπ−2i[kL+(k+K)Lf] (2.10)

at the steady state. We remark that the boundary condition (2.9) can be equivalently
stated for A as

∂A

∂t
+ Cg

∂A

∂x
= − iDωk

2 sinh 2kh
RLA at x = L. (2.11)

From the basic equations (2.5) and (2.6), it can be shown that

∂

∂t

( |A|2 + |B|2 )+ Cg
∂

∂x

( |A|2 − |B|2 ) = 0 (2.12)

(Mei 1985, equation (2.31)) which states that the rate of the total energy increase at
any station is equal to the convergence of the wave energy flux 1

2
Cg(|A|2 − |B|2). In

the absence of viscous dissipation, this energy flux must reduce to a constant over the
patch at the steady state. It follows that the spatial variation of |A|2 and |B|2 must
have the same trend. How each of them varies depends both on the bars and the
shore reflection, and is the object of this study.
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Also, if the input A(0, t) is either constant or sinusoidal in time from t = 0 onward,
then the steady (or quasi-steady) state solution must be reached at the limit of t→∞,
independently of any initial condition, due to back radiation at x = 0 and partial
absorption at the shore.

In the next section we shall give the solutions for the steady state, followed by
a detailed analysis of the implied physics. In § 5, we shall discuss sample numerical
solutions to the initial boundary value problem in order to understand better how
the final steady state is approached.

3. Steady-state response to a detuned incident wave
Following Mei (1985), we assume that on the side x < 0 the incident wave is slightly

detuned from the Bragg resonance frequency by an amount Ω, where Ω � ω, such
that

A = A0e
i(−Kx+Ωt) at x 6 0. (3.1)

Here Ω = CgK and A0 is the amplitude of the incoming wave. The solutions to (2.5)
and (2.6) with the boundary conditions (2.8) and (2.9) have the following forms at
the steady state:

A

A0

=A(x)eiΩt,
B

A0

= B(x)eiΩt, 0 < x < L, (3.2)

where A(x) and B(x) are given below for two ranges of detuning frequency relative
to the cutoff frequency

Ω0 =
|D|ωk

2 sinh (2kh)
. (3.3)

3.1. Sub-critical detuning: 0 6 Ω 6 Ω0

As in case (ii) in Mei (1985), we set

QCg =
√
Ω2

0 − Ω2 (3.4)

and obtain the following solution:

A(x) =
iQCg coshQ(L− x)− Ω sinhQ(L− x)− Ω0RLeiθD sinhQ(L− x)

iQCg coshQL− Ω sinhQL− Ω0RLeiθD sinhQL
, (3.5)

B(x)eiθD =

[
iQCg coshQ(L− x) + Ω sinhQ(L− x)

]
RLeiθD + Ω0 sinhQ(L− x)

iQCg coshQL− Ω sinhQL− Ω0RLeiθD sinhQL
. (3.6)

There are two special limits. The first is that Ω = 0, i.e. the surface waves are
perfectly tuned with the bars. Now QCg → Ω0, and (3.5) and (3.6) become

A(x) =
i cosh (Ω0/Cg)(L− x)− RLeiθD sinh (Ω0/Cg)(L− x)

i cosh (Ω0/Cg)L− RLeiθD sinh (Ω0/Cg)L
, (3.7)

B(x)eiθD =
i cosh (Ω0/Cg)(L− x)RLeiθD + sinh (Ω0/Cg)(L− x)

i cosh (Ω0/Cg)L− RLeiθD sinh (Ω0/Cg)L
. (3.8)

The second limit is that Ω = Ω0, i.e. detuning at the cutoff frequency. Now Q → 0,
and (3.5) and (3.6) reduce to

A(x) =
1 + (iΩ0/Cg)(1 + RLeiθD )(L− x)

1 + (iΩ0/Cg)(1 + RLeiθD )L
, (3.9)
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B(x)eiθD =
−(iΩ0/Cg)(1 + RLeiθD )(L− x) + RLeiθD

1 + (iΩ0/Cg)(1 + RLeiθD )L
. (3.10)

3.2. Super-critical detuning: Ω > Ω0

Let

PCg =
√
Ω2 − Ω2

0 , (3.11)

where P is the envelope wavenumber. We obtain from (2.5)–(2.9) that

A(x) =
iPCg cosP (L− x)− Ω sinP (L− x)− Ω0RLeiθD sinP (L− x)

iPCg cosPL− Ω sinPL− Ω0RLeiθD sinPL
, (3.12)

B(x)eiθD =

[
iPCg cosP (L− x) + Ω sinP (L− x)

]
RLeiθD + Ω0 sinP (L− x)

iPCg cosPL− Ω sinPL− Ω0RLeiθD sinPL
. (3.13)

As in case (i) in Mei (1985), the amplitudes of the surface waves over the bars exhibit
spatial oscillations.

4. Physical effects of shoreline reflection
4.1. Sub-critical detuning

Mei (1985) found for |RL| = 0 that the amplitudes of the incident and the reflected
waves always decrease monotonically onshore. Here it is convenient to introduce a
phase-shifted reflection coefficient

R̃L = |RL|ei(θD+θRL), (4.1)

where θRL denotes the phase of RL. We now show that with |RL| 6= 0 the variation of
|A| and |B| over the bar patch has three possible trends, depending on the complex

coefficient R̃L. As pointed out before, the spatial trends of |A| and |B| across the bar
patch are similar due to the constancy of the total energy flux at the steady state, so
we need only examine one of them, say |B|.

From (3.6), the intensity of the reflected waves over the bar patch is

|B(x)|2 =
I(x1)

|iQCg coshQL− Ω sinhQL− Ω0RLeiθD sinhQL|2 , (4.2)

where

I(x) = [Ω2
0 + 2Ω0ΩRe (R̃L)] sinh2 Q(L− x) + Ω2

0 |RL|2 cosh2 Q(L− x)

−Ω0QCg Im (R̃L) sinh 2Q(L− x)− Ω2 |RL|2 , (4.3)

with Re(·) and Im(·) denote, respectively, the real and imaginary parts of the quantity
inside the parentheses. To study the spatial variation of |B(x)|, we calculate the first
two derivatives of I(x) with respect to x. Denoting

c1 = Ω2
0(1 + |RL|2) + 2Ω0ΩRe (R̃L), c2 = 2Ω0QCg Im (R̃L), (4.4)

we then get from (4.3) that

Ix = −Q [c1 sinh2 2Q(L− x)− c2 cosh2 2Q(L− x)
]
, (4.5)

Ixx = 2Q2
[
c1 cosh2 2Q(L− x)− c2 sinh2 2Q(L− x)

]
. (4.6)
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Figure 1. Complex plane of R̃L for sub-critical detuning. Region I (semicircle in the lower
half-plane): A and B decrease monotonically shoreward. Region II (doubly hatched): A and B
increase monotonically shoreward, Region III (singly hatched): A and B first decrease then increase
shoreward.

Since from (4.4)

c1 − c2 = (Ω0 Re (R̃L) + Ω)2 + (Ω0 Im (R̃L)− QCg)2 > 0

and cosh y > sinh y, it then follows from (4.6) that Ixx > 0 everywhere. Hence Ix

increases with x. There are three possibilities, corresponding to three regions in the

unit circle in the complex plane of R̃L.
Region I: Both incident and reflected waves decrease monotonically onshore. This is

the case where the shore is always protected by the bar patch. It occurs when Ix 6 0
at x = L, hence Ix < 0 everywhere in 0 < x < L and |B(x)|2 decreases with x. From
(4.5),

Ix = 2QΩ0

√
Ω2

0 − Ω2 Im (R̃L) at x = L. (4.7)

Clearly, Ix(L) 6 0 if and only if

Im (R̃L) 6 0, (4.8)

which is the lower half-plane of R̃L. Since |RL| 6 1, this region is in fact the lower
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half of the unit circle, centred at the origin of the complex plane of R̃L, as shown in
figure 1(a–c).

Region II: Both incident and reflected waves increase monotonically shoreward. This
occurs when Ix > 0 at x = 0, hence Ix > 0 everywhere in 0 < x < L and |B(x)|2
increases with x. Upon inserting c1 and c2 and setting x = 0, it can be shown from
(4.5) that Ix(0) > 0 when(

Re (R̃L) +
Ω

Ω0

)2

+

(
Im (R̃L)− QCg

Ω0

coth 2QL

)2

6

(
QCg/Ω0

sinh 2QL

)2

. (4.9)

When plotted in the complex plane of R̃L, this inequality represents the interior of
the circle C centred at the point

C =

(
− Ω
Ω0

,
QCg

Ω0

coth 2QL

)
(4.10)

with radius

CG = % =
QCg/Ω0

sinh 2QL
. (4.11)

Because of the constraint that |RL| 6 1, only the intersection of C with the unit circle
is of physical relevance, as shown by the doubly hatched area in figure 1(a).

The distance between the centre C and the origin O is, from (4.10),

OC =

√(
Ω

Ω0

)2

+

(
QCg

Ω0

coth 2QL

)2

=

√
1 +

(
QCg/Ω0

sinh 2QL

)2

> 1. (4.12)

Thus the centre of the circle C is always located outside the unit circle. However, the
distance from the origin to the point G where the circle C intersects the line segment
OC is

OG = OC − CG =
√

1 + %2 − % =
1√

1 + %2 + %
< 1. (4.13)

Therefore the circle C always intersects the unit circle, implying that the monotonic
and exponential increase of |A(x)| and |B(x)| onshore is physically feasible when
reflection at the shoreward edge is strong and satisfies (4.9). In this case, the bar
patch amplifies the wave energy towards the shoreline, and hence may cause strong
sediment motion near the shore and pose threats to coastal structures.

In the limit of perfect tuning (Ω = 0), the circle C and its interior are given from
(4.9) by

(Re (R̃L))2 + (Im (R̃L)− coth 2QL)2 6
1

sinh2 2QL
(4.14)

and is plotted in figure 1(b). In the limit of detuning at the cutoff (Ω = Ω0), the
inequality (4.9) reduces to

(Re (R̃L) + 1)2 +

(
Im (R̃L)− Cg

2Ω0L

)2

6

(
Cg

2Ω0L

)2

, (4.15)

as shown in figure 1(c). In all three cases, the circle C is always in the upper half-plane

of R̃L.
Region III: Both incident and reflected waves decrease first then increase onshore.

Referring to figure 1(a–c), this case corresponds to the singly hatched area in the
upper half of the unit circle. Ix = 0 occurs at xm, where 0 < xm < L. To the left of
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xm, Ix < 0, hence I decreases with x. To the right Ix > 0, and I increases with x.
The limit at which the minimum I(xm) occurs at xm = L is the boundary between

Region I and Region III where Im(R̃L) = 0. For perfect tuning, the minimum I(xm)
is equal to zero, so there is no reflected wave B at this point. The origin of the plane

R̃L is the only case studied in Mei (1985).
Let us examine the effects of the total width of the bar patch. As L increases, we

see from (4.9), (4.14) and (4.15) that the radius of the circle C decreases and the
centre C moves towards the unit circle, thus Region II diminishes in area. At the

limit L → ∞, the circle C reduces to a single point C ′ = (−Ω/Ω0 ,
√

1− (Ω2/Ω2
0))

on the unit circle. Note that the sequence of the two limits L → ∞ and RL → C ′
is important: limRL→C ′ limL→∞ |A| = 0 from (3.5), but limL→∞ limRL→C ′ |A| = ∞.
Setting L→∞ first means physically that no incident waves can ever reach L, hence
RL is practically ineffective. The second limit means that the incident wave is always
able to reach the far end at x = L and be reflected there no matter how long the
patch is; after waiting long enough the effect of bars at L is always felt.

Sample calculations are shown in figure 2 for Ω/Ω0 = 0.5 with three different patch
widths (Ω0L/Cg = 1, 2, 5). For a fixed phase angle θD + θRL , the effects of different
reflection coefficients |RL| are compared. The limiting case RL = 0 in which |B(x)|
decreases monotonically in x predicted by Mei (1985) is shown by the solid lines.
In figure 2(a) (Ω0L/Cg = 1), each curve corresponds to a point on the line segment

OC in the complex plane R̃L shown in figure 1. The inclination of OC is about

θD + θRL ' 2π/3. For small enough reflection, as for |RL| < 0.6, the complex R̃L is in
Region III and |B(x)| first decreases then increases shoreward. For strong reflection,
say |RL| > 0.6, the complex R̃L is now in Region II and |B(x)| increases monotonically
shoreward. As the phase angle θD + θRL decreases to π/3 in figure 2(b), R̃L is outside
the circle C, but still in the upper half-plane; all the curves show first the decrease

then the increase with x. Finally, in figure 2(c), R̃L is in the lower half-plane (Region
I). |B(x)| decreases monotonically with x.

The sensitive dependence of the solutions on the phase angle
(
θD + θRL

)
is partic-

ularly significant since it casts doubt on the practicality of the idea of constructing

longshore bars for beach protection. For a fixed bar patch, i.e. fixed θD , moving R̃L
from one quadrant to the next in the complex plane means changing θRL by less than
π/2. This can be achieved either by moving the reflector at the shoreline by less than
one-quarter of the bar wavelength (one-eighth of the water wavelength), or by adding
or cutting off one-quarter bar wavelength from the patch. Consider for example a
perfectly reflecting vertical wall at x = L + Lf . The complex reflection coefficient at
x = L at steady state is given by (2.10) with

θD + θRL = θD + π− 2k(L+ Lf)− 2KLf. (4.16)

Clearly, to change (θD + θRL) by π/2, one needs only to change
(
L+ Lf

)
by 1/8 of

the water wavelength, or 1/4 of the bar wavelength.
For naturally formed bars, the value θD , which gives the position of the bar crest

(trough), cannot be chosen a priori, like that for rigid bars. It is determined not only
by the waves but is also affected by the dominant mode of sediment motion (bedload
or suspended load), as remarked by Carter, Liu & Mei (1973) and O’Hare & Davies
(1993). Our theoretical study in progress shows that the position of sand bars is a
dynamical consequence of the shoreline reflection RL and it changes during the course
of the evolution. These details will be reported elsewhere (Yu & Mei 2000).

To see the effects of patch length L, we show in figure 2(d–f, g–i) the results for
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Ω0L/Cg equal to 2 and 5, respectively. Referring to figure 1, the radius of the circle

C is now smaller; there is now a wider range of R̃L falling on the line segment OC ,
for which |B(x)| decreases with increasing x over most of the patch. When |RL| is
close to unity along OC (figure 2d, g), the amplitudes of the incident and the reflected
waves can be more than five times greater than that of the incoming waves from the
sea. Note that this amplification is achieved by changing L alone, for any given Lf
(including Lf = 0).

As mentioned in the introduction, O’Hare & Davies (1993) observed in two nu-
merical examples that the wave amplitudes decrease (increase) shoreward if the bar
crests are upwave of the wave envelope nodes (antinodes). We confirm and generalize
this result analytically in the Appendix. Specifically when R̃L is in Region II every
bar crest is downwave of a node but upwave of the next antinode. But when R̃L is
in Region I, every bar crest is downwave of an antinode but upwave of the next
node. However our interpretation is that this is the consequence of energy exchange
between incident (A) and reflected (B) waves through the intermediary of the bars,
rather than one wavetrain being reflected by the bars and the other not.

4.2. Super-critical detuning

It is seen from (3.12) and (3.13) that the main feature of super-critical detuning is
the spatial oscillation of A(x) and B(x) at the period 2π/P . If the bar patch is not
long enough (L 6 2π/P ), the oscillation of the incident and the reflected waves is not
noticeable.

From (3.13) we have

|B|2 = a0 + a1 cos 2P (L− x) + a2 sin 2P (L− x), (4.17)

where

a0 =
1

γ2

[
Ω2 |RL|2 +

Ω2
0

2
(1− |RL|2) + ΩΩ0 Re (R̃L)

]
, (4.18)

a1 =
1

γ2

[
−Ω

2
0

2
(1 + |RL|2)− ΩΩ0 Im (R̃L)

]
, (4.19)

a2 =
1

γ2
[−Ω0 Im (R̃L)PCg], (4.20)

and

γ2 = Ω2 + Ω2
0 |RL|2 sin2 PL− Ω2

0 cos2 PL

+ 2ΩΩ0 Re (R̃L) sin2 PL− Ω0PCg Im (R̃L) sin 2PL. (4.21)

The amplitude of the oscillation is given by
√
a2

1 + a2
2.

In figure 3, numerical calculations are shown for Ω/Ω0 = 1.5. For Ω0L/Cg = 1
in figure 3(a–c), the bar patch is about half of the oscillation period, therefore the
solutions appear to be similar to that of the sub-critical case. For a longer patch,
Ω0L/Cg = 5 in figure 3(d–f), |B|, as well as |A|, oscillates in x. The amplitude of the

fluctuation is strongly affected by both the magnitude and the phase of R̃L.

5. Transient development of Bragg reflection
To see why the steady state is so sensitive to the phase angle, it is revealing to

study the transient evolution of Bragg resonance by solving the initial-boundary value
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Figure 2. Spatial variations of the amplitude of the reflected wavetrain B, for sub-critical detuning.
(a–c) Ω0L/Cg = 1; (d–f ) Ω0L/Cg = 2; (g–i) Ω0L/Cg = 5. Ω/Ω0 = 0.5.

problem for (2.5) and (2.6). For convenience, we choose the following normalization:

x′ =
x

L
, t′ =

Cg

L
t, (A′, B′) =

(A,B)

A0

(5.1)

and define

B̂′ = −iB′eiθD . (5.2)

Then (2.5) and (2.6) become, after dropping primes for brevity,

At + Ax = αB̂, (5.3)

B̂t − B̂x = −αA, (5.4)

for 0 < x < 1, where

α =
Ω0L

Cg
(5.5)
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is real and positive. At the seaward edge,

A = ei(Ω/Ω0)αt at x = 0. (5.6)

At the shoreward edge of the patch, we assume for simplicity that the bar patch
extends all the way up to the shoreline, therefore

B̂

A
= −iR̃L = −i|RL|eiθD+iθRL at x = 1 (5.7)

is satisfied during the course of the time evolution. At t = 0, the leading edge of the
incident wavetrain just arrives at x = 0. Thus the initial conditions are

A = B̂ = 0 for 0 < x 6 1, t = 0. (5.8)

Equations (5.3)–(5.8) can readily be solved numerically by a finite difference scheme.†
For illustration, we shall consider a perfectly reflecting shore so that |RL| = 1, and
perfect tuning (Ω = 0) so that A(0, t) = 1. Two special reflection coefficients will be
examined:

B̂

A
= ±1, i.e. R̃L = ±i, at x = 1. (5.9)

It is easy to see that A(x, t) must be real, and so is B̂(x, t). From (5.3) and (5.4), the
equations for energy densities for each wave are(

∂

∂t
+

∂

∂x

)
1
2
|A|2 = αB̂A, (5.10)

(
∂

∂t
− ∂

∂x

)
1
2
|B̂|2 = −αB̂A. (5.11)

Over the patch of bars there is a transfer of energy between A and B. Specifically, if

B̂A > 0 is positive, A gains energy from B̂, and hence increases with propagation dis-

tance in the +x-direction, while B̂ must decrease in amplitude during its propagation
in the −x-direction.

Results shown in figure 4 correspond to R̃L = i, i.e. (B̂/A)L = 1, hence to Region
II of the complex plane of R̃L. On the other hand, results in figure 5 are for R̃L = −i,
i.e. (B̂/A)L = −1, hence Region I. In both sets of figures A and B̂, as well as the
shoreward energy flux 1

2
(|A|2 − |B|2), are plotted. For t < 1, the results are the same

in both cases because the front of the incident wavetrain A has not yet reached the
shoreline at x = 1; the effect of the shore reflection is not felt. Bragg scattering,
already visible at t = 0.1, is quite clear by t = 0.5. In particular, the reflected wave

envelope is being generated behind the right-going front with B̂ < 0. Since the energy

of B̂ must be transferred from the incident waves, the magnitude of A is reduced
except at the entry where A is maintained at the steady input value of unity, and

at the front where B̂ = 0. Ahead of the front both A and B̂ are zero. This scenario
continues up to t = 1 when the front of the incident wave envelope reaches the
shoreline at x = 1. Afterwards the two cases become very different.

(B̂/A)L = 1: In this case, shore reflection, manifested through R̃L, forces a train of
reflected waves with phases opposite to those generated by local energy transfer from
A. As this reflected front propagates back toward x = 0 and then beyond to x < 0,

there is a tendency to reverse the amplitude of B̂ from negative to positive values.

† Analytical solution by, e.g., Laplace transform is in principle possible but unwieldy.
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Now to the right of this reflected front where B̂ > 0, see figure 4(d) for t = 1.9, A

gains energy from B̂ according to (5.10); meanwhile the magnitude of B̂ diminishes
in its propagation direction (−x) due to energy loss to A. As a result, there is a
shoreward energy flux to the right of this reflected front. To the left of this front,

the effect of shore reflection has not been felt, B̂ < 0 and receives energy from A.

As time goes on, the positive contribution of shore reflection to B̂ gradually wins
over the negative contribution of the local scattering, as shown in figure 4(e, f) for

t = 2.5, 5.0. Gradually the influence of shore reflection dominates and B̂ becomes
positive everywhere, see figure 4(g) for t = 10. Note that in all these figures the
energy flux is shoreward, implying the trapping of energy near the shoreward edge.

Receiving energy constantly from B̂, A near x = 1 has increased markedly. Forced

by shore reflection, B̂ has also increased. Finally at t = 40 (see figure 4g) the state

of equilibrium is practically reached, at which A = B̂ = eαx. Now the incident energy
from A is exactly carried back to the sea from the patch by the reflected waves. The

total energy flux 1
2
(|A|2 − |B̂|2) is then zero everywhere.

(B̂/A)L = −1: Here shore reflection sends back reflected waves with the same sign
as those generated by local energy transfer from A, i.e. B̂ < 0, see figure 5(c) for
t = 1.0. Because of this the magnitude of A is steadily reduced near the shoreward

edge (cf. (5.10)), resulting in turn in the reduction of B̂ at x = 1. Near the seaward
end x = 0, the steady supply of energy from x < 0 maintains the level of A. These
events can be seen in figure 5(d) for t = 1.9. Note the large negative (seaward) energy
flux to the right of the reflected front, in contrast to the previous case (cf. figure 4d).
After t = 2, B̂(0) almost reaches −1 so that the energy carried out by B̂ at x = 0
nearly balances that brought in by A, see figure 5(e, f) for t = 2.5, 5. The equilibrium

state (A = −B̂ = e−αx) is approached rather rapidly.

These two examples clearly show how different shore reflection coefficients RL
contribute to the qualitative difference in the final steady states of Bragg resonance.

6. Conclusions

The main result of this study is that a patch of rigid bars in front of a beach or
seawall can either provide shelter or worsen the hazards of the incident sea, depending
on the condition of the shore reflection. As the mechanism is essentially a bar-mediated
transfer of energy between incident (right-going) and reflected (left-going) wavetrains,
the phase of the shoreline reflection relative to that of bars determines how the energy
is transferred locally, and hence is a key to the qualitative change of wave response. In
particular, small changes of the location or the total length of the patch can alter this
phase relation significantly. Such a sensitive dependence suggests that the potential
application of Bragg reflection for beach protection is fraught with uncertainties and
is not promising.
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Appendix. Position of bars relative to the wave envelope
From the velocity potential (2.3), the wave envelope nodes (minimum vertical

displacement at the free surface) occur at the stations where

cos (2kx+ θR) = 1 or 2kx+ θR = 0, 2π, . . . , (A 1)

where θR is the phase angle of local reflection coefficient R = B/A. The antinodes
(maximum vertical displacement at the free surface) occur at

cos (2kx+ θR) = −1 or 2kx+ θR = π, 3π, . . . . (A 2)

From the bottom profile (2.1), the bar crests are located at 2kx − θD = 0, 2π, . . . or
equivalently,

2kx+ θR = (θR + θD) , 2π+ (θR + θD) , . . . . (A 3)

It follows immediately that if 0 < θR + θD < π the bar crest is downwave of a wave
node but upwave of the next antinode; if π < θR + θD < 2π the crest is downwave of
an antinode but upwave of the next node.

For steady state with detuning, (3.2) can be substituted into (2.5) to get the following
equation for |A|:

Cg
∂ |A|
∂x

= Ω0 |B| sin (θR + θD). (A 4)

Thus, when sin(θR + θD) < 0, i.e. π < θR + θD < 2π, |A| decreases with x (shoreward);

when 0 < θR+θD < π, |A| increases with x. In view of the analysis in § 4.1, when R̃L is in
Region I and waves decrease monotonically shoreward over the patch, each bar crest
must be downwave of an antinode and upwave of the next node (π < θR + θD < 2π

everywhere). When R̃L is in Region II and waves increase monotonically shoreward,
each bar crest must be downwave of a node and upwave of the next antinode
(0 < θR + θD < π everywhere). For the cases in Region III, sin (θR + θD) must change
sign somewhere inside the patch.
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